Mitochondrial Ca2+ uptake in skeletal muscle health and disease

J Zhou, K Dhakal, J Yi - Science China Life Sciences, 2016 - Springer
Science China Life Sciences, 2016Springer
Muscle uses Ca 2+ as a messenger to control contraction and relies on ATP to maintain the
intracellular Ca 2+ homeostasis. Mitochondria are the major sub-cellular organelle of ATP
production. With a negative inner membrane potential, mitochondria take up Ca 2+ from
their surroundings, a process called mitochondrial Ca 2+ uptake. Under physiological
conditions, Ca 2+ uptake into mitochondria promotes ATP production. Excessive uptake
causes mitochondrial Ca 2+ overload, which activates downstream adverse responses …
Abstract
Muscle uses Ca2+ as a messenger to control contraction and relies on ATP to maintain the intracellular Ca2+ homeostasis. Mitochondria are the major sub-cellular organelle of ATP production. With a negative inner membrane potential, mitochondria take up Ca2+ from their surroundings, a process called mitochondrial Ca2+ uptake. Under physiological conditions, Ca2+ uptake into mitochondria promotes ATP production. Excessive uptake causes mitochondrial Ca2+ overload, which activates downstream adverse responses leading to cell dysfunction. Moreover, mitochondrial Ca2+ uptake could shape spatio-temporal patterns of intracellular Ca2+ signaling. Malfunction of mitochondrial Ca2+ uptake is implicated in muscle degeneration. Unlike non-excitable cells, mitochondria in muscle cells experience dramatic changes of intracellular Ca2+ levels. Besides the sudden elevation of Ca2+ level induced by action potentials, Ca2+ transients in muscle cells can be as short as a few milliseconds during a single twitch or as long as minutes during tetanic contraction, which raises the question whether mitochondrial Ca2+ uptake is fast and big enough to shape intracellular Ca2+ signaling during excitation-contraction coupling and creates technical challenges for quantification of the dynamic changes of Ca2+ inside mitochondria. This review focuses on characterization of mitochondrial Ca2+ uptake in skeletal muscle and its role in muscle physiology and diseases.
Springer